|
Problem 63: Counting Factors by Length
|
|
\(
\newcommand{\fac}{\mathit{fact}}%
\newcommand{\prefixsum}{\mathit{prefix\_sum}}%
\newcommand{\Count}{\mathit{Count}}%
\)
Let $\fac_x[\ell]$ denote the number of (distinct) factors of length $\ell$
occurring in a word $x$.
Show how to compute in linear time all numbers $\fac_x[\ell]$,
$\ell=1,\dots,|x|$, related to a word $x$, assuming a constant-size alphabet.
Exploit the Suffix tree of the word.