The Thue-Morse word $\tau_3=\sa{abbabaab}$ provides $$T_{\sa{a}}(3)=\{0,3,5,6\} \mbox{ and } T_{\sa{b}}(3)=\{1,2,4,7\}.$$ The property $\Dd(3,T_{\sa{a}}(3),T_{\sa{b}}(3))$ holds due to the equalities: $0+3+5+6=1+2+4+7=14$, $0^2+3^2+5^2+6^2=1^2+2^2+4^2+7^2=70$.
Problem 10: Thue-Morse Words and Sums of Powers |
For a finite set of natural numbers $I$ let $\SUM_k(I) = \sum_{i\in I}\,i^k$. Given two finite sets $I$ and $J$ of natural numbers we consider the property $\Dd(n,I,J)$: $$\mbox{for any }k, 0\lt k\lt n,\; \SUM_k(I) = \SUM_k(J),$$ which we examine with regards to sets of positions on the $n$th Thue--Morse word $\tau_n$ of length $2^n$. Namely, the sets are $$T_{\sa{a}}(n)=\{i \mid \tau_n[i]={\tt a}\} \mbox{ and } T_{\sa{b}}(n)=\{j \mid \tau_n[j]=\sa{b}\}.$$