Example
\(
\def\sa#1{\tt{#1}}
\def\dd{\dot{}\dot{}}
\def\fib{\mathit{fib}}
\)
It can be checked directly that $\{4,6,8,12\}$ and $\{4,8,10,12\}$ are
attractors on $\tau_4$.
$i$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
| 11 | 12 | 13
| 14 | 15 |
$\tau[i]$ | $\sa{a}$ | $\sa{b}$ | $\sa{b}$ | $\sa{a}$ | $\sa{b}$ | $\sa{a}$ | $\sa{a}$ | $\sa{b}$
| $\sa{b}$ | $\sa{a}$ | $\sa{a}$ | $\sa{b}$ | $\sa{a}$ | $\sa{b}$ | $\sa{b}$ | $\sa{a}$ |
It can be checked directly that $\{4,7\}$ and $\{6,7\}$ are both attractors on $\fib_5$.
Attractors of size $2$ are obviously of the smallest size because two of its
positions have to point on two different letters.
$i$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
| 11 | 12 |
$\fib_5[i]$ | $\sa{a}$ | $\sa{b}$ | $\sa{a}$ | $\sa{a}$ | $\sa{b}$ | $\sa{a}$ | $\sa{b}$ | $\sa{a}$
| $\sa{a}$ | $\sa{b}$ | $\sa{a}$ | $\sa{a}$ | $\sa{b}$ |
|
Problem 127: String attractors
|
|
\(
\newcommand{\Att}{\mathrm{Att}}
\)
The notion of the string attractor provides a unifying framework for known
dictionary-based compressors.
A string attractor on a word $x$ is a subset
$\Att$ of positions on $x$ for which each factor $u$ of $x$ has an occurrence
covering at least one position in $\Att$.
That is, there are positions $i$,
$j$ and $t$ satisfying $u=x[i\dd j]$, $t\in\Att$ and $i\leq t\leq j$.
We concentrate on attractors on two families of words.
Thue-Morse words
Thue-Morse words are defined as follows:
\[
\tau_0 = \sa{a},
\tau_{k+1} = \tau_k\overline{\tau_k}, \mbox{ for } k \geq 0,
\]
where the bar morphism is defined by
$\overline{\sa{a}}\,=\sa{b}$ and $\overline{\sa{b}}\,=\sa{a}$.
Note the length of the $k$th Thue-Morse word is $|\tau_k|=2^k$ and
$\overline{\tau_{k+1}} = \overline{\tau_k}\tau_k$.
Construct an attractor of size at most $4$.
for Thue-Morse words $\tau_k$, $k\geq 4$.
Attractors on Fibonacci words
The Fibonacci word $\fib_k$ is $\phi^k(\sa{a})$, $k\geq 0$, where the morphism
$\phi$ is defined by $\phi(\sa{a})=\sa{ab}$ and $\phi(\sa{b})=\sa{a}$.
The length of $\fib_k$ is the Fibonacci number $F_{k+2}$ ($F_0=0$, $F_1=1$,
$F_2=1$, $F_3=2$, $\dots$).
Find two essentially distinct attractors of size $2$ for each Fibonacci word
$\fib_k$, $k\geq 2$.
References
-
J. Fuchs and P. Whittington,
The 2-attractor problem is NP-complete.
In O. Beyersdorff, M. M. Kanté, O. Kupferman, and D. Lokshtanov, editors,
Proceedings of 41st International Symposium on Theoretical Aspects of Computer
Science, STACS 2024, March 12-14, 2024, Clermont-Ferrand, France,
volume 289 of LIPIcs, pages 35:1-35:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024
-
D. Kempa and N. Prezza,
At the roots of dictionary compression: string attractors,
In I. Diakonikolas, D. Kempe, and M. Henzinger, editors,
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 827-840. ACM, 2018.
-
K. Kutsukake, T. Matsumoto, Y. Nakashima, S. Inenaga, H. Bannai,
and M. Takeda,
On repetitiveness measures of Thue-Morse words,
In C. Boucher and S. V. Thankachan, editors, String Processing and Information
Retrieval - 27th International Symposium, SPIRE 2020, Orlando,
FL, USA, October 13-15, 2020, Proceedings, volume 12303 of Lecture
Notes in Computer Science, pages 213-220. Springer, 2020.
-
S. Mantaci, A. Restivo, G. Romana, G. Rosone, and M. Sciortino,
A combinatorial view on string attractors,
Theor. Comput. Sci. 850 (2021) 236-248.