Problem 29: Strict Border Table of the Fibonacci Word |
The border table $\tbord$ (see Problem 19) of the infinite Fibonacci word $\mathbf{f}$ has a simple structure but values in its strict border table $\sbord$ (see Problem 25) look chaotic at first glance. The problem examines a simple relation between the two tables, which helps to quickly compute any individual value of the table $\sbord$.
Below are the tables of periods, borders and strict borders related to a prefix of the Fibonacci word. Values at index $\ell$ correspond to the prefix $\mathbf{f}[0\dd \ell-1]$ of length $\ell$.
$i$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
$x[i]$ | $\sa{a}$ | $\sa{b}$ | $\sa{a}$ | $\sa{a}$ | $\sa{b}$ | $\sa{a}$ | $\sa{b}$ | $\sa{a}$ | $\sa{a}$ | $\sa{b}$ | $\sa{a}$ | |
$\ell$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
$\tper[\ell]$ | 1 | 2 | 2 | 3 | 3 | 3 | 5 | 5 | 5 | 5 | 5 | |
$\tbord[\ell]$ | -1 | 0 | 0 | 1 | 1 | 2 | 3 | 2 | 3 | 4 | 5 | 6 |
$\sbord[\ell]$ | -1 | 0 | -1 | 1 | 0 | -1 | 3 | -1 | 1 | 0 | -1 | 6 |